Source:
#
# Copyright (c) 2013-2015, Scott J Maddox
#
# This file is part of openbandparams.
#
# openbandparams is free software: you can redistribute it and/or modify
# it under the terms of the GNU Affero General Public License as published
# by the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# openbandparams is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Affero General Public License for more details.
#
# You should have received a copy of the GNU Affero General Public License
# along with openbandparams. If not, see <http://www.gnu.org/licenses/>.
#
#############################################################################
# Make sure we import the local openbandparams version
import os
import sys
sys.path.insert(0,
os.path.abspath(os.path.join(os.path.dirname(__file__), '../..')))
from openbandparams import *
import string
# Print all parameters of all III-V zinc blende alloys
params = {}
for binary in iii_v_zinc_blende_binaries:
for param in binary.get_unique_parameters():
if param.name not in params:
params[param.name] = param
names = [n for n,p in sorted(params.items())]
descriptions = [p.description for n,p in sorted(params.items())]
max_name_width = max([len(name) for name in names])
max_desc_width = max([len(desc) for desc in descriptions])
print '='*max_name_width+' '+'='*max_desc_width
print '{} {}'.format(string.ljust('Parameter', max_name_width),'Description')
print '='*max_name_width+' '+'='*max_desc_width
for name, desc in zip(names, descriptions):
print '{} {}'.format(string.ljust(name, max_name_width),desc)
print '='*max_name_width+' '+'='*max_desc_width
Result:
========================= ==================================================================================
Parameter Description
========================= ==================================================================================
CBO conduction band offset energy relative to InSb VBO
CBO_Gamma Gamma-valley conduction band offset energy relative to InSb VBO
CBO_L L-valley conduction band offset energy relative to InSb VBO
CBO_X X-valley conduction band offset energy relative to InSb VBO
Delta_SO split-off energy
Eg bandgap energy
Eg_Gamma Gamma-valley bandgap energy
Eg_Gamma_0 Gamma-valley bandgap energy at 0 K
Eg_L L-valley bandgap energy
Eg_L_0 L-valley bandgap energy at 0 K
Eg_X X-valley bandgap energy
Eg_X_0 X-valley bandgap energy at 0 K
Ep Ep interband matrix element
F F Kane remote-band parameter
VBO valance band offset energy relative to InSb VBO
a lattice parameter
a_300K lattice parameter at 300 K
a_c conduction band deformation potential
a_v valance band deformation potential
alpha_Gamma Gamma-valley Varshni alpha parameter
alpha_L L-valley Varshni alpha parameter
alpha_X X-valley Varshni alpha parameter
b b shear deformation potential
beta_Gamma Gamma-valley Varshni beta parameter
beta_L L-valley Varshni beta parameter
beta_X X-valley Varshni beta parameter
c11 c11 elastic constant
c12 c12 elastic constant
c44 c44 elastic constant
d d shear deformation potential
dielectric static relative dielectric permittivity (i.e. <~ 1 THz)
dielectric_high_frequency high-frequency dielectric permittivity (i.e. >~ 100 THz)
electron_affinity electron affinity energy
luttinger1 first Luttinger parameter
luttinger2 second Luttinger parameter
luttinger3 third Luttinger parameter
luttinger32 difference between third and second Luttinger parameters (luttinger3 - luttinger2)
meff_SO split-off band effective mass
meff_e_Gamma electron effective mass in the Gamma-valley
meff_e_Gamma_0 electron effective mass in the Gamma-valley at 0 K
meff_e_L_DOS electron effective mass density of states in the L-valley
meff_e_L_long electron effective mass in the longitudinal direction in the L-valley
meff_e_L_trans electron effective mass in the transverse direction in the L-valley
meff_e_X_DOS electron effective mass density of states in the X-valley
meff_e_X_long electron effective mass in the longitudinal direction in the X-valley
meff_e_X_trans electron effective mass in the transverse direction in the X-valley
meff_hh_100 heavy-hole effective mass in the <100> direction
meff_hh_110 heavy-hole effective mass in the <110> direction
meff_hh_111 heavy-hole effective mass in the <111> direction
meff_lh_100 light-hole effective mass in the <100> direction
meff_lh_110 light-hole effective mass in the <110> direction
meff_lh_111 light-hole effective mass in the <111> direction
nonparabolicity Kane band nonparabolicity parameter for the Gamma-valley
thermal_expansion lattice parameter thermal expansion coefficient
========================= ==================================================================================